Source code for neodroidvision.utilities.opencv_utilities.voting.hough.custom.line
import math
from pathlib import Path
import imageio
import numpy
from draugr.opencv_utilities import to_gray
from draugr.visualisation import progress_bar
from matplotlib import pyplot
[docs]def hough_line(img, angle_step=1, lines_are_white=True, value_threshold=5):
"""
Hough transform for lines
Input:
img - 2D binary image with nonzeros representing edges
angle_step - Spacing between angles to use every n-th angle
between -90 and 90 degrees. Default step is 1.
lines_are_white - boolean indicating whether lines to be detected are white
value_threshold - Pixel values above or below the value_threshold are edges
Returns:
accumulator - 2D array of the hough transform accumulator
theta - array of angles used in computation, in radians.
rhos - array of rho values. Max size is 2 times the diagonal
distance of the input image.
"""
# Rho and Theta ranges
thetas = numpy.deg2rad(numpy.arange(-90.0, 90.0, angle_step))
width, height = img.shape
diag_len = int(round(math.sqrt(width * width + height * height)))
rhos = numpy.linspace(-diag_len, diag_len, diag_len * 2)
# Cache some resuable values
cos_t = numpy.cos(thetas)
sin_t = numpy.sin(thetas)
num_thetas = len(thetas)
# Hough accumulator array of theta vs rho
accumulator = numpy.zeros((2 * diag_len, num_thetas), dtype=numpy.uint8)
# (row, col) indexes to edges
are_edges = img > value_threshold if lines_are_white else img < value_threshold
y_idxs, x_idxs = numpy.nonzero(are_edges)
# Vote in the hough accumulator
for i in progress_bar(range(len(x_idxs))):
x = x_idxs[i]
y = y_idxs[i]
for t_idx in progress_bar(range(num_thetas)):
# Calculate rho. diag_len is added for a positive index
rho = diag_len + int(round(x * cos_t[t_idx] + y * sin_t[t_idx]))
accumulator[rho, t_idx] += 1
return accumulator, thetas, rhos
[docs]def show_hough_line(img, accumulator, thetas, rhos, save_path=None):
"""
:param img:
:type img:
:param accumulator:
:type accumulator:
:param thetas:
:type thetas:
:param rhos:
:type rhos:
:param save_path:
:type save_path:
"""
pyplot.imshow(
accumulator,
aspect="auto",
cmap="jet",
extent=[numpy.rad2deg(thetas[-1]), numpy.rad2deg(thetas[0]), rhos[-1], rhos[0]],
)
if save_path is not None:
pyplot.savefig(save_path, bbox_inches="tight")
pyplot.show()
if __name__ == "__main__":
imgpath = Path.home() / "OneDrive" / "Billeder" / "2.jpg"
if imgpath.exists():
img = imageio.imread(imgpath)
accumulator, thetas, rhos = hough_line(to_gray(img))
show_hough_line(img, accumulator, thetas, rhos)
else:
print(f"could not find {imgpath}")