neodroidvision.data.mixed.penn_fudan.PennFudanDataset

class neodroidvision.data.mixed.penn_fudan.PennFudanDataset(root: Union[str, Path], split: SplitEnum = SplitEnum.training, return_variant: PennFudanReturnVariantEnum = PennFudanReturnVariantEnum.binary)[source]

Bases: SupervisedDataset

description

__init__(root: Union[str, Path], split: SplitEnum = SplitEnum.training, return_variant: PennFudanReturnVariantEnum = PennFudanReturnVariantEnum.binary)[source]
Parameters
  • root

  • split

Methods

__init__(root[, split, return_variant])

param root

get_all(idx)

Return all info including bounding boxes for each instance

get_binary(idx)

Return a single binary channel target for all instances in image

get_instanced(idx)

Return a separate channel target for each instance in image

get_transforms(split)

param split

get_tuple_transforms(split)

param split

Attributes

categories

image_size

image_size_T

predictor_channels

predictor_shape

return: :rtype:

response_channels_binary

response_channels_instanced

response_channels_two_classes

response_shape

return: :rtype:

split_names

return: :rtype:

class PennFudanReturnVariantEnum(value)[source]

Bases: Enum

Return binary mask, instanced or all annotations

get_all(idx)[source]

Return all info including bounding boxes for each instance

Parameters

idx

Returns

Return type

get_binary(idx)[source]

Return a single binary channel target for all instances in image

Parameters

idx

Returns

Return type

get_instanced(idx)[source]

Return a separate channel target for each instance in image

Parameters

idx

Returns

Return type

static get_transforms(split: SplitEnum)[source]
Parameters

split

Returns

Return type

static get_tuple_transforms(split: SplitEnum)[source]
Parameters

split

Returns

Return type

property predictor_shape: Tuple[int, ...]

return: :rtype:

property response_shape: Tuple[int, ...]

return: :rtype:

property split_names: Dict[SplitEnum, str]

return: :rtype: